1,923 research outputs found

    Detection of lensing substructure using ALMA observations of the dusty galaxy SDP.81

    Full text link
    We study the abundance of substructure in the matter density near galaxies using ALMA Science Verification observations of the strong lensing system SDP.81. We present a method to measure the abundance of subhalos around galaxies using interferometric observations of gravitational lenses. Using simulated ALMA observations, we explore the effects of various systematics, including antenna phase errors and source priors, and show how such errors may be measured or marginalized. We apply our formalism to ALMA observations of SDP.81. We find evidence for the presence of a M=108.96±0.12M⊙M=10^{8.96\pm 0.12} M_{\odot} subhalo near one of the images, with a significance of 6.9σ6.9\sigma in a joint fit to data from bands 6 and 7; the effect of the subhalo is also detected in both bands individually. We also derive constraints on the abundance of dark matter subhalos down to M∼2×107M⊙M\sim 2\times 10^7 M_{\odot}, pushing down to the mass regime of the smallest detected satellites in the Local Group, where there are significant discrepancies between the observed population of luminous galaxies and predicted dark matter subhalos. We find hints of additional substructure, warranting further study using the full SDP.81 dataset (including, for example, the spectroscopic imaging of the lensed carbon monoxide emission). We compare the results of this search to the predictions of Λ\LambdaCDM halos, and find that given current uncertainties in the host halo properties of SDP.81, our measurements of substructure are consistent with theoretical expectations. Observations of larger samples of gravitational lenses with ALMA should be able to improve the constraints on the abundance of galactic substructure.Comment: 18 pages, 13 figures, Comments are welcom

    Pathogenic germline variants in patients with features of hereditary renal cell carcinoma: Evidence for further locus heterogeneity.

    Get PDF
    Inherited renal cell carcinoma (RCC) is associated with multiple familial cancer syndromes but most individuals with features of non-syndromic inherited RCC do not harbor variants in the most commonly tested renal cancer predisposition genes (CPGs). We investigated whether undiagnosed cases might harbor mutations in CPGs that are not routinely tested for by testing 118 individuals with features suggestive of inherited RCC (family history of RCC, two or more primary RCC aged <60 years, or early onset RCC ≤46 years) for the presence of pathogenic variants in a large panel of CPGs. All individuals had been prescreened for pathogenic variants in the major RCC genes. We detected pathogenic or likely pathogenic (P/LP) variants of potential clinical relevance in 16.1% (19/118) of individuals, including P/LP variants in BRIP1 (n = 4), CHEK2 (n = 3), MITF (n = 1), and BRCA1 (n = 1). Though the power to detect rare variants was limited by sample size the frequency of truncating variants in BRIP1, 4/118, was significantly higher than in controls (P = 5.92E-03). These findings suggest that the application of genetic testing for larger inherited cancer gene panels in patients with indicators of a potential inherited RCC can increase the diagnostic yield for P/LP variants. However, the clinical utility of such a diagnostic strategy requires validation and further evaluation and in particular, confirmation of rarer RCC genotype-phenotype associations is required

    Discovery of a Gas-Rich Companion to the Extremely Metal-Poor Galaxy DDO 68

    Get PDF
    We present HI spectral-line imaging of the extremely metal-poor galaxy DDO 68. This system has a nebular oxygen abundance of only 3% Z⊙_{\odot}, making it one of the most metal-deficient galaxies known in the local volume. Surprisingly, DDO 68 is a relatively massive and luminous galaxy for its metal content, making it a significant outlier in the mass-metallicity and luminosity-metallicity relationships. The origin of such a low oxygen abundance in DDO 68 presents a challenge for models of the chemical evolution of galaxies. One possible solution to this problem is the infall of pristine neutral gas, potentially initiated during a gravitational interaction. Using archival HI spectral-line imaging obtained with the Karl G. Jansky Very Large Array, we have discovered a previously unknown companion of DDO 68. This low-mass (MHI_{\rm HI} == 2.8×\times107^{7} M⊙_{\odot}), recently star-forming (SFRFUV_{\rm FUV} == 1.4×\times10−3^{-3} M⊙_{\odot} yr−1^{-1}, SFRHα_{\rm H\alpha} << 7×\times10−5^{-5} M⊙_{\odot} yr−1^{-1}) companion has the same systemic velocity as DDO 68 (Vsys_{\rm sys} == 506 km s−1^{-1}; D == 12.74±\pm0.27 Mpc) and is located at a projected distance of 42 kpc. New HI maps obtained with the 100m Robert C. Byrd Green Bank Telescope provide evidence that DDO 68 and this companion are gravitationally interacting at the present time. Low surface brightness HI gas forms a bridge between these objects.Comment: Accepted for publication in the Astrophysical Journal Letter

    Albedo and Reflection Spectra of Extrasolar Giant Planets

    Full text link
    We generate theoretical albedo and reflection spectra for a full range of extrasolar giant planet (EGP) models, from Jovian to 51-Pegasi class objects. Our albedo modeling utilizes the latest atomic and molecular cross sections, a Mie theory treatment of extinction by condensates, a variety of particle size distributions, and an extension of the Feautrier radiative transfer method which allows for a general treatment of the scattering phase function. We find that due to qualitative similarities in the compositions and spectra of objects within each of five broad effective temperature ranges, it is natural to establish five representative EGP albedo classes: a ``Jovian'' class (Teff≲150_{\rm eff} \lesssim 150 K; Class I) with tropospheric ammonia clouds, a ``water cloud'' class (Teff∼250_{\rm eff} \sim 250 K; Class II) primarily affected by condensed H2_2O, a ``clear'' class (Teff≳350_{\rm eff} \gtrsim 350 K; Class III) which lacks clouds, and two high-temperature classes: Class IV (900 K ≲\lesssim Teff_{\rm{eff}} ≲\lesssim 1500 K) for which alkali metal absorption predominates, and Class V (Teff_{\rm{eff}} ≳\gtrsim 1500 K and/or low surface gravity (≲\lesssim 103^3 cm s−2^{-2})) for which a high silicate layer shields a significant fraction of the incident radiation from alkali metal and molecular absorption. The resonance lines of sodium and potassium are expected to be salient features in the reflection spectra of Class III, IV, and V objects. We derive Bond albedos and effective temperatures for the full set of known EGPs and explore the possible effects of non-equilibrium condensed products of photolysis above or within principal cloud decks. As in Jupiter, such species can lower the UV/blue albedo substantially, even if present in relatively small mixing ratios.Comment: revised LaTeX manuscript accepted to Ap.J.; also available at http://jupiter.as.arizona.edu/~burrows/paper

    Establishment of a Multi-Analyte Serum Biomarker Panel to Identify Lymph Node Metastases in Non-small Cell Lung Cancer

    Get PDF
    IntroductionIn non-small cell lung cancer (NSCLC), the presence of locoregional lymph node metastases remains the most important prognostic factor and significantly guides treatment regimens. Unfortunately, currently-available noninvasive staging modalities have limited accuracy. The objective of this study was to create a multianalyte blood test capable of discriminating a patient's true (pathologic) nodal status preoperatively.MethodsPretreatment serum specimens collected from 107 NSCLC patients with localized disease were screened with 47 biomarkers implicated in disease presence or progression. Multivariate statistical algorithms were then used to identify the optimal combination of biomarkers for accurately discerning each patient's nodal status.ResultsWe identified 15 candidate biomarkers that met our criteria for statistical relevance in discerning a patient's preoperative nodal status. A ‘random forest’ classification algorithm was used with these parameters to define a 6-analyte panel, consisting of macrophage inflammatory protein-1α, carcinoembryonic antigen, stem cell factor, tumor necrosis factor-receptor I, interferon-γ, and tumor necrosis factor-α, that was the optimum combination of biomarkers for identifying a patient's pathologic nodal status. A Classification and Regression Tree analysis was then created with this panel that was capable of correctly classifying 88% of the patients tested, relative to the pathologic assessments. This value is in contrast to our observed 85% classification rate using conventional clinical methods.ConclusionsThis study establishes a serum biomarker panel with efficacy in discerning preoperative nodal status. With further validation, this blood test may be useful for assessing nodal status (including occult disease) in NSCLC patients facing tumor resection therapy

    Big Physics At Small Places: The Mongol Horde Model Of Undergraduate Research

    Get PDF
    A model for engaging undergraduates in cutting-edge experimental nuclear physics research at a national user facility is discussed.&nbsp; Methods to involve students and examples of their success are presented

    Urban meadows as an alternative to short mown grassland: Effects of composition and height on biodiversity

    Get PDF
    There are increasing calls to provide greenspace in urban areas, yet the ecological quality, as well as quantity, of greenspace is important. Short mown grassland designed for recreational use is the dominant form of urban greenspace in temperate regions but requires considerable maintenance and typically provides limited habitat value for most taxa. Alternatives are increasingly proposed, but the biodiversity potential of these is not well understood. In a replicated experiment across six public urban greenspaces we used nine different perennial meadow plantings to quantify the relative roles of floristic diversity and height of sown meadows on the richness and composition of three taxonomic groups – plants, invertebrates and soil microbes. We found that all meadow treatments were colonised by plant species not sown in the plots, suggesting that establishing sown meadows does not preclude further locally determined grassland development if management is appropriate. Colonising species were rarer in taller and more diverse plots, indicating competition may limit invasion rates. Urban meadow treatments contained invertebrate and microbial communities that differed from mown grassland. Invertebrate taxa responded to changes in both height and richness of meadow vegetation, but most orders were more abundant where vegetation height was longer than mown grassland. Order richness also increased in longer vegetation and Coleoptera family richness increased with plant diversity in summer. Microbial community composition seems sensitive to plant species composition at the soil surface (0–10 cm), but in deeper soils (11–20 cm) community variation was most responsive to plant height, with bacteria and fungi responding differently. In addition to improving local residents’ satisfaction, native perennial meadow plantings can produce biologically diverse grasslands that support richer and more abundant invertebrate communities, and restructured plant, invertebrate and soil microbial communities compared with short mown grassland. Our results suggest that diversification of urban greenspace by planting urban meadows in place of some mown amenity grassland is likely to generate substantial biodiversity benefits, with a mosaic of meadow types likely to maximise such benefits
    • …
    corecore